Data	collection
Duiu	concenton

1231 reflections with
$I > 3\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\rm max} = 27.5^{\circ}$
$h = 0 \rightarrow 9$
$k = 0 \rightarrow 12$
$l = -14 \rightarrow 14$
3 standard reflections
every 150 reflections
intensity decay: 0.85%

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm A}^{-3}$
R = 0.043	$\Delta \rho_{\rm min}$ = -0.62 e Å ⁻³
wR = 0.045	Extinction correction:
S = 1.674	Zachariasen (1967) type
1231 reflections	2, Gaussian isotropic
111 parameters	Extinction coefficient:
H atoms treated by a	0.0335
mixture of independent	Scattering factors from Inter-
and constrained refinement	national Tables for X-ray
$w = 1/\sigma^2(F_o)$	Crystallography (Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.002$	

Table 2. Selected geometric parameters (Å, °) for (II)

NiN1	1.911 (3)	N2-C6	1.326 (5)
Ni—N2	1.862 (3)	N2—C7	1.468 (5)
N1—Ni—N1 ⁱ	98.7 (2)	N1—Ni—N2'	168.0 (1)
N1—Ni—N2	83.9 (1)	N2—Ni—N2 ¹	96.0 (2)
C			

Symmetry code: (i) $\frac{1}{2} - x, y, \frac{1}{2} - z$.

The positions of the H atoms were idealized (C—H 0.95 Å), assigned isotropic displacement parameters $B(H) = 1.2B_{cq}(C)$, and allowed to ride on their parent C atoms. The water H atoms were refined isotropically.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structures: TEXSAN; program(s) used to refine structures: TEXSAN; molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1076). Services for accessing these data are described at the back of the journal.

References

- Kajikawa, Y., Mukai, K., Ishizu, K. & Ojima, H. (1981). Chem. Lett. pp. 801-804.
- Kajikawa, Y., Sakurai, T., Azuma, N., Kohno, S., Tsuboyama, S., Kobayashi, K., Mukai, K. & Ishizu, K. (1984). Bull. Chem. Soc. Jpn, 57, 1454–1458.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Mulqi, M., Stephens, F. S. & Vagg, R. S. (1982). Inorg. Chim. Acta, 62, 221–229; 63, 197–207.

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Ojima, H. (1967). Nippon Kagaku Zasshi, 88, 333-339.

Stephens, F. S. & Vagg, R. S. (1982a). Inorg. Chim. Acta, 57, 9-13.

Stephens, F. S. & Vagg, R. S. (1982b). Inorg. Chim. Acta, 57, 43-49.

Stephens, F. S. & Vagg, R. S. (1984a). Inorg. Chim. Acta, 88, 7-14.

Stephens, F. S. & Vagg, R. S. (1984b). Inorg. Chim. Acta, 90, 17-24.

To-ori, M. & Hirota, H. (1990). In Saishin NMR. Tokyo: Springer-Verlag. [Translation from Atta-ur-Rahman (1986). Nuclear Magnetic Resonance. New York: Springer-Verlag.]

Tsuboyama, S., Sakurai, T., Kobayashi, K., Azuma, N., Kajikawa, Y. & Ishizu, K. (1984). Acta Cryst. B40, 466–473.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 722-724

Dichloro(2,6-diisopropylaniline-N)(η^{5} pentamethylcyclopentadienyl)rhodium(III)

SOON W. LEE AND JAE-GYUNG LEE

Department of Chemistry, Sung Kyun Kwan University, Natural Science Campus, Suwon 440-746, Korea. E-mail: swlee@chem.skku.ac.kr

(Received 29 September 1998; accepted 9 November 1998)

Abstract

The title compound, $[RhCp*Cl_2(H_2N-C_6H_3-2,6-iPr_2)]$ (where Cp* is pentamethylcyclopentadienyl) or $[RhCl_2-(C_{10}H_{15})(C_{12}H_{19}N)]$, was prepared from the reaction of di- μ -chloro-dichlorobis(pentamethylcyclopentadienyl)dirhodium(III), $[Cp*RhCl_2]_2$ [White, Yates & Maitlis (1992). *Inorg. Synth.* **29**, 228–234], with 2,6diisopropylaniline in acetonitrile. This compound has a three-legged piano-stool structure. The ring is almost parallel to the phenyl ring of the 2,6-diisopropylaniline ligand.

Comment

The iridium analogue of the title compound, $[IrCp*Cl_2-(H_2N-C_6H_3-2,6^{-i}Pr_2)]$, was prepared by Bergman's group (Gluek *et al.*, 1991). Using the same methodology, we isolated the title compound, (I), which is stable both in the solid state and in solution.

Acta Crystallographica Section C ISSN 0108-2701 © 1999

The unit-cell parameters and systematic absences indicated two possible space groups: Pna21 (noncentrosymmetric) and Pnma (centrosymmetric). A statistical analysis of the intensities suggested a noncentrosymmetric space group and the structure analysis converged only in $Pna2_1$. There is a local pseudo-mirror running through the C1, C6, Rh, N1, C11 and C14 atoms. This mirror is parallel to the xy plane at z =0.846(1). There are two intramolecular hydrogen bonds in which N1 acts as a donor to Cl1 and Cl2 $[N1 \cdot \cdot \cdot Cl1 =$ 3.007 (9), $H1A \cdots C11 = 2.56 \text{ Å}$ and $N1 - H1A \cdots C11 =$ 112° ; N1···Cl2 = 3.018 (9), H1B···Cl2 = 2.58 Å and N1—H1B···Cl2 = 111°].

The coordination sphere of the Rh atom can be described as a distorted octahedron, assuming that the pentamethylcyclopentadienyl (Cp*) ligand occupies three out of the six octahedral sites. This complex can also be referred to as a three-legged piano-stool compound. The Cp* ring (C1-C5) is almost parallel to the phenyl ring of the 2,6-diisopropylaniline ligand (C11–C16), with a dihedral angle of $2.12(3)^{\circ}$. The plane defined by Rh, Cl1, and Cl2 is at a dihedral angle of 56.71 (9)° with respect to the Cp* ring and 57.51 (8)° with respect to the phenyl ring.

The Rh—N1 bond distance of 2.214 (2) Å indicates an Rh-N single bond (expected range 1.95-2.15 Å; Davis et al., 1969). The two chemically equivalent Rh—Cl bonds [2.419(3) and 2.420(3) Å] are slightly longer than the terminal Rh-Cl bonds in the starting compound [2.397 (1) Å; Churchill *et al.*, 1977].

Experimental

2,6-Diisopropylaniline (0.11 ml, 0.6 mmol) was added to a solution of [Cp*RhCl₂]₂ (0.062 g, 0.1 mmol) in acetonitrile (20 ml) and the resulting solution stirred for 5 h. The solvent was removed under vacuum and the residue washed with hexane $(2 \times 20 \text{ ml})$ to give a mixture that contained the starting and title compounds. Recrystallization was from dichloromethane-hexane. ¹H NMR (CDCl₃): $\delta = 7.122$ (2H, d, J = 7.5 Hz, Ph), 6.998 (1H, t, J = 7.5 Hz, Ph), 4.617 (2H, br, NH₂), 3.162 (2H, br, CH), 1.381 (15H, s, Cp*), 1.285 (12H, d, J = 6.5 Hz, CMe₂); ¹³C{¹H} NMR (CDCl₃): $\delta = 137.973$ (Ph), 137.127 (Ph), 123.730 (Ph), 122.959 (Ph), 94.556 (Cs in C₅Me₅), 28.338 (CH in CHMe₂), 23.535 (Me₂ in CHMe₂), 9.264 (Me₅ in C₅Me₅); IR (KBr): 3304 (N—H), 3253 (N—H), 1459 cm^{-1} (Cp*).

Crystal data

 $[RhCl_2(C_{10}H_{15})(C_{12}H_{19}N)]$ $M_r = 486.31$ Orthorhombic $Pna2_1$ a = 13.556(1) Å b = 9.8241(9) Å c = 17.604(2) Å V = 2344.4 (4) Å³ Z = 4 $D_x = 1.378 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.671, T_{\rm max} = 0.794$ 3063 measured reflections 2783 independent reflections 2277 reflections with $F > 4\sigma(F)$

Refinement

F

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.001$
R(F) = 0.023	$\Delta \rho_{\rm max} = 0.205 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.061$	$\Delta \rho_{\rm min} = -0.455 \ {\rm e} \ {\rm \AA}^2$
S = 1.083	Extinction correction:
2265 reflections	Scattering factors from
244 parameters	International Table
H atoms: see below	Crystallography (V
$w = 1/[\sigma^2(F_o^2) + (0.0364P)^2]$	
+ 0.2111 <i>P</i>]	
where $P = (F_0^2 + 2F_c^2)/3$	

$\lambda = 0.71073 \text{ A}$
Cell parameters from 58
reflections
$\theta = 2.34 - 25.70^{\circ}$
$\mu = 0.962 \text{ mm}^{-1}$
T = 295 (2) K
Prism
$0.58 \times 0.42 \times 0.24$ mm
Orange-red
-

Mo $K\alpha$ radiation

$R_{\rm int} = 0.019$
$\theta_{\rm max} = 25^{\circ}$
$h = -1 \rightarrow 16$
$k = -1 \rightarrow 11$
$l = -20 \rightarrow 1$
3 standard reflections
every 97 reflections
intensity decay: none

$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.205 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.455 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table	1. Selected	geometric	parameters	(Å.	0	}
Inclo	1. Dettettu	L'onnen ne	puruments	1 4 1,		,

	-	-	
Rh—C2	2.144 (11)	Rh-N1	2.214 (2)
Rh—C4	2.142 (10)	Rh—C12	2.419 (3)
Rh—C5	2.141 (11)	Rh—C11	2.420 (3)
Rh—C1	2.152 (3)	N1-C11	1.451 (4)
Rh—C3	2.149 (9)		
1-Rh-Cl2	81.2 (3)	Cl2—Rh—Cl1	92.74 (3)
11RhCl1	80.8 (3)	C11—N1—Rh	131.5 (2)

All non-H atoms were refined anisotropically. All the H atoms were generated in ideal positions and refined using a riding model.

Data collection: XSCANS (Siemens, 1995). Cell refinement: XSCANS. Data reduction: SHELXTL (Bruker, 1997). Program(s) used to solve structure: SHELXTL. Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

This work is based on research sponsored by the Korean Ministry of Education under grant BSRI-98-3420.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1385). Services for accessing these data are described at the back of the journal.

References

- Bruker (1997). SHELXTL. Structure Determination Programs. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA.
- Churchill, M. R., Julis, S. A. & Rotella, F. (1977). Inorg. Chem. 16, 1137-1141.
- Davis, B. R., Payne, N. C. & Ibers, J. A. (1969). Inorg. Chem. 8, 2719-2728.
- Gluek, D. S., Wu, J., Hollander, F. J. & Bergman, R. G. (1991). J. Am. Chem. Soc. 113, 2041–2054.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Siemens (1995). XSCANS. X-ray Single Crystal Analysis System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- White, C., Yates, A. & Maitlis, P. M. (1992). Inorg. Synth. 29, 228-234.

Acta Cryst. (1999). C55, 724-726

cis-(Nitrato-O,O')[(1RS,4SR,5SR,8RS,11SR,-12SR)-C-rac-1,5,8,12-tetramethyl-1,4,8,11tetraazacyclotetradecane- $\kappa^4 N$]nickel(II) nitrate

Kaliyamoorthy Panneerselvam,^a Tian-Huey Lu,^a Ta-Yung Chi,^b Fen-Ling Liao^b and Chung-Sun Chung^b

^aDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China, and ^bDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China. E-mail: thlu@phys.nthu. edu.tw

(Received 2 July 1998; accepted 4 November 1998)

Abstract

The crystal structure of the title compound, $[Ni(NO_3)-(C_{14}H_{32}N_4)]NO_3$, was determined by X-ray diffraction. The Ni^{II} ion is six-coordinate in a distorted octahedral arrangement, with the tetradentate macrocyclic ligand in a folded conformation. The two five-membered rings of the macrocyclic ligand have skew conformations, while the two six-membered rings adopt chair conformations. The four chiral N-atom centers are 1*RS*, 4*SR*, 8*RS* and 11*SR*, and the chiral C-atom centers are 5*SR* and 12*SR*.

Comment

The macrocyclic ligand 1,5,8,12-tetramethyl-1,4,8,11tetraazacyclotetradecane exists as two isomers, *i.e. Cmeso* and *C-rac* (Miyamura *et al.*, 1987). The crystal structure of the nickel(II) complex of the *C-meso* isomer has been reported previously (Miyamura *et al.*, 1987). This paper reports the crystal structure of the nickel(II) complex, (I), of the *C-rac* isomer.

The title complex cation has a distorted octahedral geometry, with the coordination formed by the tetradentate macrocyclic ligand in a folded conformation and the two O atoms of the bidentate nitrato group. The Ni1, N3 and O2 atoms lie on a crystallographic twofold axis. The four Ni—N bonds can be classified into two groups, *i.e.* the Ni1—N2 secondary amine bonds and the Ni1— N1 tertiary amine bonds. The Ni—N bond lengths are similar to those of the six-coordinate Ni¹¹ complexes in related macrocyclic ligands (Lu *et al.*, 1991). The Ni—O bond is 2.154 (2) Å, which is longer than those found in *cis*-diaqua(1,4,8,11-tetraazacyclotetradecane)nickel(II) (2.140 and 2.130 Å; Barefield *et al.*, 1986), but shorter

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. H atoms have been excluded, except for that on N2. The dotted lines represent N—H···O hydrogen bonds [symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$].